Abstract

In hedonic games, players form coalitions based on individual preferences over the group of players they could belong to. Several concepts to describe the stability of coalition structures in a game have been proposed and analysed in the literature. However, prior research focuses on algorithms with time complexity that is at least linear in the input size. In the light of very large games that arise from, e.g., social networks and advertising, we initiate the study of sublinear time property testing algorithms for existence and verification problems under several notions of coalition stability in a model of hedonic games represented by graphs with bounded degree. In graph property testing, one shall decide whether a given input has a property (e.g., a game admits a stable coalition structure) or is far from it, i.e., one has to modify at least an epsilon-fraction of the input (e.g., the game’s preferences) to make it have the property. In particular, we consider verification of perfection, individual rationality, Nash stability, (contractual) individual stability, and core stability. While there is always a Nash-stable coalition structure (which also implies individually stable coalitions), we show that the existence of a perfect coalition structure is not tautological but can be tested. All our testers have one-sided error and time complexity that is independent of the input size.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.