Abstract

Species of terebratulide brachiopods have been largely characterized qualitatively on the basis of morphology. Furthermore, species-level morphological variability has rarely been analyzed within a quantitative framework. The objective of our research is to quantify morphological variation to test the validity of extant named species of terebratulide brachiopods, focusing on the lophophore-supporting structures—the “long loops.” Long loops are the most distinctive and complex morphological feature in terebratellidine brachiopods and are considered to be phylogenetically and taxonomically informative. We studied eight species with problematic species identities in three genera distributed in the North Pacific: Laqueus, Terebratalia, and Dallinella. Given how geometrically complex long loops are, we generated 3D models from computed tomography (CT) scans of specimens of these eight species and analyzed them using 3D geometric morphometrics. Our goal was to determine ranges of variation and to test whether species are clearly distinguishable from one another in morphospace and statistically. Previous studies have suggested that some species might be overly split and are indistinguishable. Our results show that these extant species of terebratellidines can be reliably distinguished on the basis of quantitative loop morphometrics. Using 3D geometric morphometric methods, we demonstrate the utility of CT beyond purely descriptive imaging purposes in testing the morphometric validity of named species. It is crucial to treat species described and named from qualitative morphology as working hypotheses to be tested; many macroevolutionary studies depend upon the accurate assessment of species in order to identify and seek to explain macroevolutionary patterns. Our results provide quantitative documentation of the distinction of these species and thus engender greater confidence in their use to characterize macroevolutionary patterns among extant terebratellidine brachiopods. These methods, however, require further testing in extinct terebratellidines, which only rarely preserve the delicate long loop in three dimensions. In addition, molecular analyses of extant terebratellidines will test the species delimitations supported by the morphometric analyses presented in this study. [Species determination; morphological variability; 3D geometric morphometrics; terebratulide brachiopods; long loops.]

Highlights

  • Despite being one of the most diverse and abundant marine invertebrates in the fossil record, during the Paleozoic Era, brachiopods are often neglected in neontological studies —partly due to their low diversity, lack of economic value, and the challenges associated with collecting live specimens

  • The main questions driving our study are: Are species distinct from one another in terms of their loop morphology? Given that species of terebratulide brachiopods have been formally described based on qualitative features, how accurate are these designations when tested within a quantitative framework? How does variability compare among extant Western Pacific and Eastern Pacific species? Since long loops are highly geometrically complex, we created 3D surface models from computed tomography (CT) scans of eight species in three genera of terebratulide brachiopods (Dallinella, Laqueus, and Terebratalia) thought to be closely related to each other [1], and analyzed them within a 3D geometric morphometric framework

  • We focused on a total of 58 adult individuals of the following species: Laqueus erythraeus, L. vancouveriensis, L. rubellus, L. quadratus, L. blanfordi, Terebratalia transversa, T. coreanica, and Dallinella occidentalis (Table 1)

Read more

Summary

Introduction

Despite being one of the most diverse and abundant marine invertebrates in the fossil record, during the Paleozoic Era, brachiopods are often neglected in neontological studies —partly due to their low diversity, lack of economic value, and the challenges associated with collecting live specimens. The aim of our study is to quantify the morphological variation of one of the most conspicuous and geometrically complex features in terebratulide brachiopods—the mineralized loop that supports the lophophore—and test the morphological validity of extant species in both the Western and Eastern North Pacific. Since long loops are highly geometrically complex, we created 3D surface models from computed tomography (CT) scans of eight species in three genera of terebratulide brachiopods (Dallinella, Laqueus, and Terebratalia) thought to be closely related to each other [1], and analyzed them within a 3D geometric morphometric framework. Only fewer than 3% (approximately 400 species) are still alive today, with approximately 75% classified in the order Terebratulida [4, 5]

Objectives
Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.