Abstract
Many penalized maximum likelihood estimators correspond to posterior mode estimators under specific prior distributions. Appropriateness of a particular class of penalty functions can therefore be interpreted as the appropriateness of a prior for the parameters. For example, the appropriateness of a lasso penalty for regression coefficients depends on the extent to which the empirical distribution of the regression coefficients resembles a Laplace distribution. We give a testing procedure of whether or not a Laplace prior is appropriate and accordingly, whether or not using a lasso penalized estimate is appropriate. This testing procedure is designed to have power against exponential power priors which correspond to penalties. Via simulations, we show that this testing procedure achieves the desired level and has enough power to detect violations of the Laplace assumption when the numbers of observations and unknown regression coefficients are large. We then introduce an adaptive procedure that chooses a more appropriate prior and corresponding penalty from the class of exponential power priors when the null hypothesis is rejected. We show that this can improve estimation of the regression coefficients both when they are drawn from an exponential power distribution and when they are drawn from a spike-and-slab distribution. Supplementary materials for this article are available online.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.