Abstract
We consider tests of serial independence for a sequence of functional observations. The new methods are formulated as L2-type criteria based on empirical characteristic functions and are convenient from the computational point of view. We derive asymptotic normality of the proposed test statistics for both discretely and continuously observed functions. In a Monte Carlo study, we show that the new test is sensitive with respect to functional GARCH alternatives, investigate the choice of necessary tuning parameters, and demonstrate that critical values obtained by resampling lead to a test with good performance in any setup, whereas the asymptotic critical values may be recommended only for a sufficiently fine discretization grid. Finite-sample comparison with a distance (auto)covariance test criterion is also included, and the article concludes with application on a real data set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.