Abstract
Within the framework of linear regression, errors arising from artificial inclusion or exclusion of variables are considered with augmentations or restrictions on a given maintained hypothesis. This permits exploitation of relations between tests based on Wald and Lagrange Multiplier Principles. It is demonstrated that the standard F test, though based on biased estimators, is nevertheless valid. The traditional analysis of misspecification is applied to the linear specialization of tests for separate families of hypotheses. An empirical example is provided examining the effect of labour legislation on the growth of Canadian trade union membership, using annual data for 1925-72.(This abstract was borrowed from another version of this item.)(This abstract was borrowed from another version of this item.)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.