Abstract

AbstractThe reliability of using abrupt changes in the spatial Hurst exponent for identifying temporal points of abrupt change in climate dynamics is explored. If a spatio-temporal dynamical system undergoes an abrupt change at a particular time, the time series of spatial Hurst exponent obtained from the data of any variable of the system should also show an abrupt change at that time. As expected, spatial Hurst exponents for each of the two variables of a model spatio-temporal system – a globally coupled map lattice based on the Burgers' chaotic map – showed abrupt change at the same time that a parameter of the system was changed. This method was applied for the identification of change points in climate dynamics using the NCEP/NCAR data on air temperature, pressure and relative humidity variables. Different abrupt change points in spatial Hurst exponents were detected for the data of these different variables. That suggests, for a dynamical system, change point detected using the two-dimensional detrended fluctuation analysis method on a single variable alone is insufficient to comment about the abrupt change in the system dynamics and should be based on multiple variables of the dynamical system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.