Abstract
In so-called random preference models of probabilistic choice, a decision maker chooses according to an unspecified probability distribution over preference states. The most prominent case arises when preference states are linear orders or weak orders of the choice alternatives. The literature has documented that actually evaluating whether decision makers’ observed choices are consistent with such a probabilistic model of choice poses computational difficulties. This severely limits the possible scale of empirical work in behavioral economics and related disciplines. We propose a family of column generation based algorithms for performing such tests. We evaluate our algorithms on various sets of instances. We observe substantial improvements in computation time and conclude that we can efficiently test substantially larger data sets than previously possible.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.