Abstract

The renormalized dynamics described by the equations of nonlinear fluctuating hydrodynamics (NFH) treated at one loop order gives rise to the basic model of the mode coupling theory (MCT). We investigate here by analyzing the density correlation function, a crucial prediction of ideal MCT, namely the validity of the multi step relaxation scenario. The equilibrium density correlation function is calculated here from the direct solutions of NFH equations for a hard sphere system. We make first detailed investigation for the robustness of the correlation functions obtained from the numerical solutions by varying the size of the grid. For an optimum choice of grid size we analyze the decay of the density correlation function to identify the multi-step relaxation process. Weak signatures of two step power law relaxation is seen with exponents which do not match predictions from the one loop MCT. For the final relaxation stretched exponential (KWW) behavior is seen and the relaxation time grows with increase of density. But apparent power law divergences indicate a critical packing fraction much higher than the corresponding MCT predictions for a hard sphere fluid.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.