Abstract

BackgroundThe intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms. When this coordination is disrupted, parasites suffer a 50% reduction in both asexual stages and sexual stage gametocytes over the acute phase of infection. Reduced gametocyte density may not simply follow from a loss of asexuals because investment into gametocytes (“conversion rate”) is a plastic trait; furthermore, the densities of both asexuals and gametocytes are highly dynamic during infection. Hence, the reasons for the reduction of gametocytes in infections that are out-of-synch with host circadian rhythms remain unclear. Here, two explanations are tested: first, whether out-of-synch parasites reduce their conversion rate to prioritize asexual replication via reproductive restraint; second, whether out-of-synch gametocytes experience elevated clearance by the host’s circadian immune responses.MethodsFirst, conversion rate data were analysed from a previous experiment comparing infections of P. chabaudi that were in-synch or 12 h out-of-synch with host circadian rhythms. Second, three new experiments examined whether the inflammatory cytokine TNF varies in its gametocytocidal efficacy according to host time-of-day and gametocyte age.ResultsThere was no evidence that parasites reduce conversion or that their gametocytes become more vulnerable to TNF when out-of-synch with host circadian rhythms.ConclusionsThe factors causing the reduction of gametocytes in out-of-synch infections remain mysterious. Candidates for future investigation include alternative rhythmic factors involved in innate immune responses and the rhythmicity in essential resources required for gametocyte development. Explaining why it matters for gametocytes to be synchronized to host circadian rhythms might suggest novel approaches to blocking transmission.

Highlights

  • The intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms

  • Like the human malaria Plasmodium falciparum, the asexual development of the rodent malaria P. chabaudi progresses through sequential stages within the IDC in synchrony with each other, transitioning between IDC stages at particular times-of-day [1, 2]

  • P. chabaudi strain AJ ring stage parasites (1 × 106 parasitized Red blood cell (RBC)) were harvested from donor mice kept in standard (12-h light: 12-h dark) or reversed (12-h dark: 12-h light) lighting schedules and used to infect recipient mice (10- to 12-week-old male MF1) in the same lighting schedule as their donor mice, or into mice kept under the opposite lighting schedule

Read more

Summary

Introduction

The intraerythrocytic development cycle (IDC) of the rodent malaria Plasmodium chabaudi is coordinated with host circadian rhythms. When this coordination is disrupted, parasites suffer a 50% reduction in both asexual stages and sexual stage gametocytes over the acute phase of infection. Two explanations are tested: first, whether out-of-synch parasites reduce their conversion rate to prioritize asexual replication via reproductive restraint; second, whether out-of-synch gametocytes experience elevated clearance by the host’s circadian immune responses. A hallmark of many species of malaria (Plasmodium) parasite is synchronous, rhythmic development during asexual replication cycles within host red blood cells. For Plasmodium chabaudi, each intraerythrocytic development cycle (IDC) spans 24 h, at the end of which mature parasites burst to release their merozoite progeny. It was found that IDC completion (schizogony) switches from the night (dark phase) to the daytime when hosts only have access to food in the daytime (light phase) [4, 5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.