Abstract
Above ∼3 keV, the X-ray spectrum of active galactic nuclei (AGNs) is characterized by the intrinsic continuum and Compton reflection features. For type-1 AGNs, several regions may contribute to the reflection. To investigate the nature of the reflecting medium, we perform a systematic analysis of the reflector using XMM-Newton and Nuclear Spectroscopic Telescope Array observations of a sample of 22 type-1 AGNs. We create a baseline model that includes Galactic absorption and an intrinsically absorbed power law, plus a reflection model. We test a set of nine reflection models in a subsample of five objects. Based on these results, we select three models to be tested on the entire sample, accounting for distinct physical scenarios: neutral/distant reflection, ionized/relativistic reflection, and neutral/distant+ionized/relativistic reflection, namely, a hybrid model. We find that 18 sources require the reflection component to fit their spectra. Among them, 67% prefer the hybrid model. Neutral and ionized models are equally preferred by three sources. We conclude that both the neutral/distant reflector most probably associated with the inner edges of the torus and the ionized/relativistic reflector associated with the accretion disk are required to describe the reflection in type-1 AGNs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.