Abstract

A procedure is outlined aiming at testing the bias due to omitted variables in vector autoregressions. The procedure consists first of filtering a vector of omitted variables and then testing the bias. The test does not rely on the availability of the omitted variables, and is based on a comparison between maximum-likelihood with Kalman filter vector autoregression and linear vector autoregression estimates. The empirical part considers two illustrative examples: a univariate regression analysis, based on the rational expectation-augmented Phillips curve; and a VAR with output, inflation and interest rates where a “price puzzle” arises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.