Abstract

In this paper, the testing of two different photovoltaic–thermal (PVT) modules under the tropical climatic conditions of Singapore, is evaluated. For this evaluation, two different types (Type A and Type B) of commercially available PVT modules have been installed and tested at the National University of Singapore (NUS), Singapore. In Type A, the PV module is encapsulated with mono-crystalline Si solar cells and integrated with a tube-and-sheet type thermal collector, whereas, in Type B, the PV module is encapsulated with multi-crystalline Si solar cells and integrated with a parallel-plate type thermal collector. The performance of the PVT modules has been evaluated based on thermal and PV efficiencies.The experiments have been performed at different flow rates (0.03kg/s and 0.06kg/s) under typical day climatic conditions. The thermal performance of the modules has been validated using basic energy balance equations and design parameters. The temperature across the different layers of the PVT modules has been measured to study the heat flow pattern across the modules. It has been found that the average thermal efficiency and PV efficiency for Type A PVT module are 40.7% and 11.8%, respectively, and for Type B are 39.4% and 11.5%, respectively. The electrical efficiency of the PV modules was also compared with and without the thermal collector, and it was found that the average PV efficiency of the PVT modules is about 0.4% higher than the normal PV module.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call