Abstract
Digital microfluidic biochips with non-regular arrays are of interest for clinical diagnostic applications in a cost-sensitive market segment. Previous techniques for biochip testing are limited to regular microfluidic arrays. We present an automatic test pattern generation (ATPG) method for non-regular digital microfluidic chips. The ATPG method can generate test patterns to detect catastrophic defects in non-regular arrays where the full reconfigurability of the digital microfluidic platform is not utilized. It automates test-stimulus design and test-resource selection, in order to minimize the test application time. We also present an integer linear programming model for the compaction of test patterns, while maintaining the desired fault coverage. We utilize two fabricated biochips with non-regular microfluidic arrays to evaluate the proposed ATPG method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.