Abstract

Abstract Purpose: An interplay between detector motion and MLC motion is a source of measurement error, when dose for dynamic arc is measured using a dosimetry system moving relative to the beam central axis during its rotation with a gantry. The purpose of this study is to develop and to evaluate a method of quantitative testing of a sag/flex of such dosimetry systems. Methods: The method is based on evaluation of relative differences between signals measured for two single arc beams, where a narrow slit field is sliding during gantry movement in opposite directions. The component of a measurement error related to the interplay effect was first assessed based on theoretical computer simulations and then on measurements for four dosimetry systems. The sag pattern of EPID and 2D array was extracted from the measurement results. Results: The simulations showed a 4 mm difference in field width and 3.3% difference in relative signals at beam axis between test beams where the slit field swept over 19 cm in opposite directions ( sinusoidal sag pattern with amplitude of 1 mm was assumed). The signal differences exceeding 4% and 5% were measured for EPID and 2D array, respectively. Conclusions: Even relatively small detector sag (less than 1 mm) can produce significant measurement error; therefore, the detector sag test should be an obligatory component of a validation of rotating dosimetry systems used for QA of dynamic arcs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.