Abstract

The design and development testing of a full scale, low emissions, ceramic combustor for a 5500 HP industrial gas turbine are described. The combustor was developed under a joint program conducted by the U.S. DOE and Solar Turbines. The ceramic combustor is designed to replace the production Centaur 50S SoLoNOx burner which uses lean-premixed combustion to limit NOx and CO to 25 and 50 ppm, respectively. Both the ceramic and production combustors are annular in shape and employ twelve premixing, natural gas fuel injectors. The ceramic combustor design effort involved the integration of two CFCC cylinders (76.2 cm [30 in.] and 35.56 cm [14 in.] diameters) into the combustor primary zone. The ceramic combustor was evaluated at Solar in full scale test rigs and a test engine. Performance of the combustor was excellent with high combustion efficiency and extremely low NOx and CO emissions. The hot walls of the ceramic combustor played a significant role in reducing CO emissions. This suggests that liner cooling air injected through the metal production liner contributes to CO emissions by reaction quenching at the liner walls. It appears that ceramics can serve to improve combustion efficiency near the combustor lean limit which, in turn, would allow further reductions in NOx emissions. Approximately 50 hours of operation have been accumulated using the ceramic combustor. No significant deterioration in the CFCC liners has been observed. A 4000 hour field test of the combustion system is planned to begin in 1997 as a durability assessment.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call