Abstract
If the neutrino analogue of the M\"ossbauer effect, namely, recoiless emission and resonant capture of neutrinos is realized, one can study neutrino oscillations with much shorter baselines and smaller source/detector size when compared to conventional experiments. In this work, we discuss the potential of such a M\"ossbauer neutrino oscillation experiment to probe nonstandard neutrino properties coming from some new physics beyond the standard model. We investigate four scenarios for such new physics that modify the standard oscillation pattern. We consider the existence of a light sterile neutrino that can mix with \bar \nu_e, the existence of a Kaluza-Klein tower of sterile neutrinos that can mix with the flavor neutrinos in a model with large flat extra dimensions, neutrino oscillations with nonstandard quantum decoherence and mass varying neutrinos, and discuss to which extent one can constrain these scenarios. We also discuss the impact of such new physics on the determination of the standard oscillation parameters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.