Abstract
This paper proposes a test statistic for discriminating between two partly non linear regression models whose parametric components are non-nested. The statistic has the form of a J-test based on a parameter which artificially nests the null and alternative hypotheses. We study in detail the realistic case where all regressors in the nonlinear part are discrete and then no smoothing is required on estimating the nonparametric components. We also consider the general case where continuous and discrete regressors are present. The performance of the test in finite samples is discussed in the context of some Monte Carlo experiments. The test is well motivated for specification testing of Engel curves. We provide an application using data from the 1980 Spanish Expenditure Survey.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.