Abstract

A multithreaded program's interleaving space is discrete and astronomically large, making effectively sampling thread schedules for manifesting concurrency bugs a challenging task. Observing that concurrency bugs can be manifested by adjusting thread relative speeds, this paper presents the new concept of speed space in which each vector denotes a family of thread schedules. A multithreaded program's speed space is approximately continuous, easy-to-sample, and preserves certain categories of concurrency bugs. We discuss the design, implementation, and evaluation of our speed-controlled scheduler for exploring adversarial/abnormal schedules. The experimental results confirm that our technique is effective in sampling diverse schedules. Our implementation also found previously unknown concurrency bugs in real-world multithreaded programs.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.