Abstract

We consider a cross-calibration test of predictions by multiple potential experts in a stochastic environment. This test checks whether each expert is calibrated conditional on the predictions made by other experts. We show that this test is good in the sense that a true expert—one informed of the true distribution of the process—is guaranteed to pass the test no matter what the other potential experts do, and false experts will fail the test on all but a small (category I) set of true distributions. Furthermore, even when there is no true expert present, a test similar to cross-calibration cannot be simultaneously manipulated by multiple false experts, but at the cost of failing some true experts.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.