Abstract

Globular clusters (GCs) in the Milky Way have characteristic velocity dispersions that are consistent with the predictions of Newtonian gravity, and may be at odds with Modified Newtonian Dynamics (MOND). We discuss a modified gravity (MOG) theory that successfully predicts galaxy rotation curves, galaxy cluster masses and velocity dispersions, lensing, and cosmological observations, yet produces predictions consistent with Newtonian theory for smaller systems, such as GCs. MOG produces velocity dispersion predictions for GCs that are independent of the distance from the Galactic center, which may not be the case for MOND. New observations of distant GCs may produce strong criteria that can be used to distinguish between competing gravitational theories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.