Abstract

Airborne transmission of SARS-CoV-2 through virus-containing aerosol particles has been established as an important pathway for Covid-19 infection. Suitable measures to prevent such infections are imperative, especially in situations when a high number of persons convene in closed rooms. Here we tested the efficiency and practicability of operating four air purifiers equipped with HEPA filters in a high school classroom while regular classes were taking place. We monitored the aerosol number concentration for particles >3 nm at two locations in the room, the aerosol size distribution in the range from 10 nm to 10 µm, PM10 and CO2 concentration. For comparison, we performed similar measurements in a neighboring classroom without purifiers. In times when classes were conducted with windows and door closed, the aerosol concentration was reduced by more than 90% within less than 30 min when running the purifiers (air exchange rate 5.5 h−1). The reduction was homogeneous throughout the room and for all particle sizes. The measurements are supplemented by a calculation estimating the maximum concentration levels of virus-containing aerosol from a highly contagious person speaking in a closed room with and without air purifiers. Measurements and calculation demonstrate that air purifiers potentially represent a well-suited measure to reduce the risks of airborne transmission of SARS-CoV-2 substantially. Staying for 2 h in a closed room with a highly infective person, we estimate that the inhaled dose is reduced by a factor of six when using air purifiers with a total air exchange rate of 5.7 h−1.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.