Abstract
We used MER-derived semi-autonomous rover science operations strategies to determine best practices suitable for remote semi-autonomous lunar rover geology. Two field teams studied two glacial moraines as analogs for potential ice-bearing lunar regolith. At each site a Rover Team commanded a human rover to execute observations based on common MER sequences; the resulting data were used to identify and characterize targets of interest. A Tiger Team followed the Rover Team using traditional terrestrial field methods, and the results of the two teams were compared. Narrowly defined goals that can be addressed using cm-scale or coarser resolution may be met sufficiently by the operational strategies adapted from MER survey mode. When reconnaissance is the primary goal, the strategies tested are necessary but not sufficient. Further, there may be a set of optimal observations for such narrowly defined, hypothesis-driven science goals, such that collecting further data would result in diminishing returns. We confirm results of previous tests that indicated systematic observations might improve efficiency during strategic planning, and improve science output during data analysis. This strategy does not markedly improve the rate at which a science team can ingest data to feed back into tactical decision-making. Other methods should be tested to separate the strategic and tactical processes, and to build in time for data analysis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.