Abstract

The quest for fundamental tests of quantum mechanics is an ongoing effort. We here address the question of what are the lowest possible moments needed to prove quantum nonlocality and noncontextuality without any further assumptions---in particular, without the often assumed dichotomy. We first show that second-order correlations can always be explained by a classical noncontextual local-hidden-variable theory. Similar third-order correlations also cannot violate classical inequalities in general, except for a special state-dependent noncontextuality. However, we show that fourth-order correlations can violate locality and state-independent noncontextuality. Finally we obtain a fourth-order continuous-variable Bell inequality for position and momentum, which can be violated and might be useful in Bell tests, closing all loopholes simultaneously.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.