Abstract

A function $f:\mathbb{F}_2^n \to \{-1,1\}$ is called linear-isomorphic to g if f=g∘A for some non-singular matrix A. In the g-isomorphism problem, we want a randomized algorithm that distinguishes whether an input function f is linear-isomorphic to g or far from being so. We show that the query complexity to test g-isomorphism is essentially determined by the spectral norm of g. That is, if g is close to having spectral norm s, then we can test g-isomorphism with poly(s) queries, and if g is far from having spectral norm s, then we cannot test g-isomorphism with o(logs) queries. The upper bound is almost tight since there is indeed a function g close to having spectral norm s whereas testing g-isomorphism requires Ω(s) queries. As far as we know, our result is the first characterization of this type for functions. Our upper bound is essentially the Kushilevitz-Mansour learning algorithm, modified for use in the implicit setting. Exploiting our upper bound, we show that any property is testable if it can be well-approximated by functions with small spectral norm. We also extend our algorithm to the setting where A is allowed to be singular.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call