Abstract

Sex allocation data in eusocial Hymenoptera (ants, bees and wasps) provide an excellent opportunity to assess the effectiveness of kin selection, because queens and workers differ in their relatedness to females and males. The first studies on sex allocation in eusocial Hymenoptera compared population sex investment ratios across species. Female-biased investment in monogyne (= with single-queen colonies) populations of ants suggested that workers manipulate sex allocation according to their higher relatedness to females than males (relatedness asymmetry). However, several factors may confound these comparisons across species. First, variation in relatedness asymmetry is typically associated with major changes in breeding system and life history that may also affect sex allocation. Secondly, the relative cost of females and males is difficult to estimate across sexually dimorphic taxa, such as ants. Thirdly, each species in the comparison may not represent an independent data point, because of phylogenetic relationships among species. Recently, stronger evidence that workers control sex allocation has been provided by intraspecific studies of sex ratio variation across colonies. In several species of eusocial Hymenoptera, colonies with high relatedness asymmetry produced mostly females, in contrast to colonies with low relatedness asymmetry which produced mostly males. Additional signs of worker control were found by investigating proximate mechanisms of sex ratio manipulation in ants and wasps. However, worker control is not always effective, and further manipulative experiments will be needed to disentangle the multiple evolutionary factors and processes affecting sex allocation in eusocial Hymenoptera.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call