Abstract
We consider a linear regression model and propose an omnibus test to simultaneously check the assumption of independence between the error and predictor variables and the goodness-of-fit of the parametric model. Our approach is based on testing for independence between the predictor and the residual obtained from the parametric fit by using the Hilbert–Schmidt independence criterion (Gretton et al., 2008). The proposed method requires no user-defined regularization, is simple to compute based on only pairwise distances between points in the sample, and is consistent against all alternatives. We develop distribution theory for the proposed test statistic, under both the null and the alternative hypotheses, and devise a bootstrap scheme to approximate its null distribution. We prove the consistency of the bootstrap scheme. A simulation study shows that our method has better power than its main competitors. Two real datasets are analysed to demonstrate the scope and usefulness of our method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.