Abstract

Abstract In this article we deal with testing the hypotheses of the so-called structured mean vector and the structure of a covariance matrix. For testing the above mentioned hypotheses Jordan algebra properties are used and tests based on best quadratic unbiased estimators (BQUE) are constructed. For convenience coordinate-free approach (see Kruskal (1968) and Drygas (1970)) is used as a tool for characterization of best unbiased estimators and testing hypotheses. To obtain the test for mean vector, linear function of mean vector with the standard inner product in null hypothesis is changed into equivalent hypothesis about some quadratic function of mean parameters (it is shown that both hypotheses are equivalent and testable). In both tests the idea of the positive and negative part of quadratic estimators is applied to get the test, statistics which have F distribution under the null hypothesis. Finally, power functions of the obtained tests are compared with other known tests like LRT or Roy test. For some set for parameters in the model the presented tests have greater power than the above mentioned tests. In the article we present new results of coordinate-free approach and an overview of existing results for estimation and testing hypotheses about BCS models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.