Abstract

ABSTRACT The apparent sizes and brightnesses of galaxies are correlated in a dipolar pattern around matter overdensities in redshift space, appearing larger on their near side and smaller on their far side. The opposite effect occurs for galaxies around an underdense region. These patterns of apparent magnification induce dipole and higher multipole terms in the cross-correlation of galaxy number density fluctuations with galaxy size/brightness (which is sensitive to the convergence field). This provides a means of directly measuring peculiar velocity statistics at low and intermediate redshift, with several advantages for performing cosmological tests of general relativity (GR). In particular, it does not depend on empirically calibrated scaling relations like the Tully–Fisher and Fundamental Plane methods. We show that the next generation of spectroscopic galaxy redshift surveys will be able to measure the Doppler magnification effect with sufficient signal-to-noise ratio to test GR on large scales. We illustrate this with forecasts for the constraints that can be achieved on parametrized deviations from GR for forthcoming low-redshift galaxy surveys with DESI and SKA2. Although the cross-correlation statistic considered has a lower signal-to-noise ratio than RSD, it will be a useful probe of GR since it is sensitive to different systematics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.