Abstract

Trend breaks appear to be prevalent in macroeconomic time series, and unit root tests therefore need to make allowance for these if they are to avoid the serious effects that unmodelled trend breaks have on power. Carrion-i-Silvestre et al. (2009) propose a pre-test-based approach which delivers near asymptotically efficient unit root inference both when breaks do not occur and where multiple breaks occur, provided the break magnitudes are fixed. Unfortunately, however, the fixed magnitude trend break asymptotic theory does not predict well the finite sample power functions of these tests, and power can be very low for the magnitudes of trend breaks typically observed in practice. In response to this problem we propose a unit root test that allows for multiple breaks in trend, obtained by taking the infimum of the sequence (across all candidate break points in a trimmed range) of local GLS detrended augmented Dickey–Fuller-type statistics. We show that this procedure has power that is robust to the magnitude of any trend breaks, thereby retaining good finite sample power in the presence of plausibly-sized breaks. We also demonstrate that, unlike the OLS detrended infimum tests of Zivot and Andrews (1992), these tests display no tendency to spuriously reject in the limit when fixed magnitude trend breaks occur under the unit root null.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.