Abstract
Abstract Leveraging external controls – relevant individual patient data under control from external trials or real-world data – has the potential to reduce the cost of randomized controlled trials (RCTs) while increasing the proportion of trial patients given access to novel treatments. However, due to lack of randomization, RCT patients and external controls may differ with respect to covariates that may or may not have been measured. Hence, after controlling for measured covariates, for instance by matching, testing for treatment effect using external controls may still be subject to unmeasured biases. In this article, we propose a sensitivity analysis approach to quantify the magnitude of unmeasured bias that would be needed to alter the study conclusion that presumed no unmeasured biases are introduced by employing external controls. Whether leveraging external controls increases power or not depends on the interplay between sample sizes and the magnitude of treatment effect and unmeasured biases, which may be difficult to anticipate. This motivates a combined testing procedure that performs two highly correlated analyses, one with and one without external controls, with a small correction for multiple testing using the joint distribution of the two test statistics. The combined test provides a new method of sensitivity analysis designed for data fusion problems, which anchors at the unbiased analysis based on RCT only and spends a small proportion of the type I error to also test using the external controls. In this way, if leveraging external controls increases power, the power gain compared to the analysis based on RCT only can be substantial; if not, the power loss is small. The proposed method is evaluated in theory and power calculations, and applied to a real trial.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.