Abstract
The importance of the normal distribution for fitting continuous data is well known. However, in many practical situations data distribution departs from normality. For example, the sample skewness and the sample kurtosis are far away from 0 and 3, respectively, which are nice properties of normal distributions. So, it is important to have formal tests of normality against any alternative. D'Agostino et al. [A suggestion for using powerful and informative tests of normality, Am. Statist. 44 (1990), pp. 316–321] review four procedures Z 2(g 1), Z 2(g 2), D and K 2 for testing departure from normality. The first two of these procedures are tests of normality against departure due to skewness and kurtosis, respectively. The other two tests are omnibus tests. An alternative to the normal distribution is a class of skew-normal distributions (see [A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Statist. 12 (1985), pp. 171–178]). In this paper, we obtain a score test (W) and a likelihood ratio test (LR) of goodness of fit of the normal regression model against the skew-normal family of regression models. It turns out that the score test is based on the sample skewness and is of very simple form. The performance of these six procedures, in terms of size and power, are compared using simulations. The level properties of the three statistics LR, W and Z 2(g 1) are similar and close to the nominal level for moderate to large sample sizes. Also, their power properties are similar for small departure from normality due to skewness (γ1≤0.4). Of these, the score test statistic has a very simple form and computationally much simpler than the other two statistics. The LR statistic, in general, has highest power, although it is computationally much complex as it requires estimates of the parameters under the normal model as well as those under the skew-normal model. So, the score test may be used to test for normality against small departure from normality due to skewness. Otherwise, the likelihood ratio statistic LR should be used as it detects general departure from normality (due to both skewness and kurtosis) with, in general, largest power.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.