Abstract
ABSTRACTThis paper proposes a consistent parametric test of Granger-causality in quantiles. Although the concept of Granger-causality is defined in terms of the conditional distribution, most articles have tested Granger-causality using conditional mean regression models in which the causal relations are linear. Rather than focusing on a single part of the conditional distribution, we develop a test that evaluates nonlinear causalities and possible causal relations in all conditional quantiles, which provides a sufficient condition for Granger-causality when all quantiles are considered. The proposed test statistic has correct asymptotic size, is consistent against fixed alternatives, and has power against Pitman deviations from the null hypothesis. As the proposed test statistic is asymptotically nonpivotal, we tabulate critical values via a subsampling approach. We present Monte Carlo evidence and an application considering the causal relation between the gold price, the USD/GBP exchange rate, and the oil price.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.