Abstract

ABSTRACT In order to better analyse the polarization of the cosmic microwave background (CMB), which is dominated by emission from our Galaxy, we need tools that can detect residual foregrounds in cleaned CMB maps. Galactic foregrounds introduce statistical anisotropy and directionality to the polarization pseudo-vectors of the CMB, which can be investigated by using the $\mathcal {D}$ statistic of Bunn and Scott. This statistic is rapidly computable and capable of investigating a broad range of data products for directionality. We demonstrate the application of this statistic to detecting foregrounds in polarization maps by analysing the uncleaned Planck 2018 frequency maps. For the Planck 2018 CMB maps, we find no evidence for residual foreground contamination. In order to examine the sensitivity of the $\mathcal {D}$ statistic, we add a varying fraction of the polarized thermal dust and synchrotron foreground maps to the CMB maps and show the per cent-level foreground contamination that would be detected with 95 per cent confidence. We also demonstrate application of the $\mathcal {D}$ statistic to another data product by analysing the gradient of the minimum-variance CMB lensing potential map (i.e. the deflection angle) for directionality. We find no excess directionality in the lensing potential map when compared to the simulations provided by the Planck Collaboration.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.