Abstract

The dramatic activation of serine proteases in nonaqueous media resulting from lyophilization in the presence of KCl is shown to be unrelated to relaxation of potential substrate diffusional limitations. Specifically, lyophilizing subtilisin Carlsberg in the presence of KCl and phosphate buffer in different proportions, ranging from 99% (w/w) enzyme to 1% (w/w) enzyme in the final lyophilized solids, resulted in biocatalyst preparations that were not influenced by substrate diffusion. This result was made evident through use of a classical analysis whereby initial catalytic rates, normalized per weight of total enzyme in the catalyst material, were measured as a function of active enzyme for biocatalyst preparations containing different ratios of active to inactive enzyme. The active enzyme content of a given biocatalyst preparation was controlled by mixing native subtilisin with subtilisin preinactivated with PMSF, a serine protease inhibitor, and lyophilizing the enzyme mixture in the presence of different fractions of KCl and phosphate buffer. Plots of initial reaction rates as a function of percent active subtilisin in the biocatalyst were linear for all biocatalyst preparations. Thus, enzyme activation (reported elsewhere to be as high as 3750-fold in hexane for the transesterification of N-Ac-L-Phe-OEt with n-PrOH) is a manifestation of intrinsic enzyme activation and not relaxation of diffusional limitations resulting from diluted enzyme preparations. Similar activation is reported herein for thermolysin, a nonserine protease, thereby demonstrating that enzyme activation due to lyophilization in the presence of KCl may be a general phenomenon for proteolytic enzymes.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.