Abstract
We provide a new test for equality of covariance matrices that leads to a convenient mechanism for testing specification using the information matrix equality. The test relies on a new characterization of equality between twok dimensional positive-definite matrices A and B : the traces of AB 1 and BA 1 are equal tok if and only if A = B. Using this criterion, we introduce a class of omnibus test statistics for equality of covariance matrices and examine their null, local, and global approximations under some mild regularity conditions. Monte Carlo experiments are conducted to explore the performance characteristics of the test criteria and provide comparisons with existing tests under the null hypothesis and local and global alternatives. The tests are applied to the classic empirical models for voting turnout investigated by Wolfinger and Rosenstone (1980) and Nagler (1991, 1994). Our tests show that all classic models for the 1984 presidential voting turnout are misspecified in the sense that the information matrix equality fails.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.