Abstract

Mono- and bis-functionalized C(60) and C(70) fullerene derivatives (DF, 1-10) that carry one or two oligoanionic dendritic termini in their malonate addends and an oligocationic octapyridinium zinc porphyrin salt (ZnP) were found to self-assemble in buffered aqueous solution to yield a novel series of 1:1 and/or 1:2 electron transfer hybrid associates. Remarkably high association constants-typically on the order of 10(8) M(-1)-were derived that corroborate stable complex formations. A combination of electrostatic and charge-transfer interactions that are operative between the electron-accepting DF and the electron-donating ZnP is considered to contribute to the uniquely high complex stability. First insight into intracomplex excited state interactions came from steady-state and time-resolved fluorescence quenching experiments that were performed with the molecular ZnP/DF hybrid associates. Excited state quenching processes are, for example, evident in form of a bi-exponential fluorescence decay of ZnP-corresponding to a distribution of associated and non-associated ZnP. Unambiguous evidence for an intracomplex electron transfer quenching, namely, formation of ZnP(.+)/C(60) (.-) and ZnP(.+)/C(70) (.-) radical ion pairs, was gathered in time-resolved transient absorption measurements. Lifetimes of these radical ion-pairs range from nanoseconds to a few microseconds.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.