Abstract

Top-down and bottom-up factors and their interaction highlight the interdependence of resources and consumer impacts on food webs and ecosystems. Variation in the strength of upwelling-mediated ecological controls (i.e., light availability and herbivory) between early and late succession stages is less well understood from the standpoint of influencing algal functional group composition. We experimentally tested the effect of light, grazing, and disturbance on rocky intertidal turf-forming algal communities. Studies were conducted on the South Island of New Zealand at Raramai on the east coast (a persistent downwelling region) and Twelve Mile Beach on the west coast (an intermittent upwelling region). Herbivory, light availability, and algal cover were manipulated and percent cover of major macroalgal functional groups and sessile invertebrates were measured monthly from October 2017 to March 2018. By distinguishing between algal functional groups and including different starting conditions in our design, we found that the mosaic-like pattern of bare rock intermingled with diverse turf-forming algae at Twelve Mile Beach was driven by a complex array of species interactions, including grazing, predation, preemptive competition and interference competition, colonization rates, and these interactions were modulated by light availability and other environmental conditions. Raramai results contrasted with those at Twelve Mile Beach in showing stronger effects of grazing and relatively weak effects of other interactions, low colonization rates of invertebrates, and light effects limited to crustose algae. Our study highlights the potential importance of an upwelling-mediated 3-way interaction among herbivory, light availability, and preemption in structuring contrasting low rocky intertidal macroalgal communities.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call