Abstract

. In this article, we study a goodness of fit test for a multiplicative distortion model under a uniformly distributed but unobserved random variable. The unobservable variable is distorted in a multiplicative fashion by an observed confounding variable. The proposed k-th power test statistic is based on logarithmic transformed observations and a correlation coefficient-based estimator without distortion measurement errors. The proper choice of k is discussed through the empirical coverage probabilities. The asymptotic null distribution of the test statistics are obtained with known asymptotic variances. Next, we proposed the conditional mean calibrated test statistic when a variable is distorted in a multiplicative fashion. We conduct Monte Carlo simulation experiments to examine the performance of the proposed test statistics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.