Abstract

Any theory invoked to explain cosmic acceleration predicts consistency relations between the expansion history, structure growth, and all related observables. Currently there exist high-quality measurements of the expansion history from type Ia supernovae, the cosmic microwave background temperature and polarization spectra, and baryon acoustic oscillations. We can use constraints from these data sets to predict what future probes of structure growth should observe. We apply this method to predict what range of cosmic shear power spectra would be expected if we lived in a $\ensuremath{\Lambda}\mathrm{CDM}$ universe, with or without spatial curvature, and what results would be inconsistent and therefore falsify the model. Though predictions are relaxed if one allows for an arbitrary quintessence equation of state $\ensuremath{-}1\ensuremath{\le}w(z)\ensuremath{\le}1$, we find that any observation that rules out $\ensuremath{\Lambda}\mathrm{CDM}$ due to excess lensing will also rule out all quintessence models, with or without early dark energy. We further explore how uncertainties in the nonlinear matter power spectrum, e.g. from approximate fitting formulas such as Halofit, warm dark matter, or baryons, impact these limits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.