Abstract

Many problems in the design and analysis of cyber-physical systems (CPS) reduce to the following optimization problem: given a CPS which transforms continuous-time input traces in R m to continuous-time output traces in R n and a cost function over output traces, find an input trace which minimizes the cost. Cyber-physical systems are typically so complex that solving the optimization problem analytically by examining the system dynamics is not feasible. We consider a black-box approach, where the optimization is performed by testing the input-output behaviour of the CPS. We provide a unified, tool-supported methodology for CPS testing and optimization. Our tool is the first CPS testing tool that supports Bayesian optimization. It is also the first to employ fully automated dimensionality reduction techniques. We demonstrate the potential of our tool by running experiments on multiple industrial case studies. We compare the effectiveness of Bayesian optimization to state-of-the-art testing techniques based on CMA-ES and Simulated Annealing.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.