Abstract
It is often of interest to estimate partial or semipartial correlation coefficients as indexes of the linear association between 2 variables after partialing one or both for the influence of covariates. Squaring these coefficients expresses the proportion of variance in 1 variable explained by the other variable after controlling for covariates. Methods exist for testing hypotheses about the equality of these coefficients across 2 or more groups, but they are difficult to conduct by hand, prone to error, and limited to simple cases. A unified framework is provided for estimating bivariate, partial, and semipartial correlation coefficients using structural equation modeling (SEM). Within the SEM framework, it is straightforward to test hypotheses of the equality of various correlation coefficients with any number of covariates across multiple groups. LISREL syntax is provided, along with 4 examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Structural Equation Modeling: A Multidisciplinary Journal
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.