Abstract
The approach to the theory of sessile dropshapes held on a cylindrical drophead is discussed. It reveals an 'undifferentiable' universal micro-dropshape for volumes below 3μL. Camera studies demonstrate the veracity of this prediction exploited in the design of a new microvolume spectrometer. The mean pathlength of light injected through a microvolume sessile drop has been determined both from the model and from experiment. Drop volumes determine accurately the mean pathlength and with this Beer's law relationship is experimentally confirmed. The Transmitted Light Drop Analyser uses this universal 'natural cuvette' to deliver both high-performance UV spectra and absorbance measurements at discrete wavelengths.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.