Abstract

Recent cosmological hydrodynamical simulations suggest that baryonic processes, and in particular supernova feedback after bursts of star formation, can alter the structure of dark matter haloes and transform primordial cusps into shallower cores. To assess whether this mechanism offers a solution to the cusp-core controversy, simulated haloes must be compared to real dark matter haloes inferred from galaxy rotation curves. For this purpose, two new dark matter density profiles were recently derived from simulations of galaxies in complementary mass ranges: the DC14 halo ($10^{10} < M_{\text{halo}}/M_{\odot} < 8 \times 10^{11}$) and the coreNFW halo ($10^{7} < M_{\text{halo}}/M_{\odot} < 10^{9}$). Both models have individually been found to give good fits to observed rotation curves. For the DC14 model, however, the agreement of the predicted halo properties with cosmological scaling relations was confirmed by one study, but strongly refuted by another. A next question is whether the two models converge to the same solution in the mass range where both should be appropriate. To investigate this, we tested the DC14 and cNFW halo models on the rotation curves of a selection of galaxies with halo masses in the range $4 \times 10^{9}$ - $7 \times 10^{10}$ $M_{\odot}$. We further applied the DC14 model to a set of rotation curves at higher halo masses, up to $9 \times 10^{11}$ $M_{\odot}$, to verify the agreement with the cosmological scaling relations. We find that both models are generally able to reproduce the observed rotation curves, in line with earlier results, and the predicted dark matter haloes are consistent with the cosmological $c-M_{\text{halo}}$ and $M_{*}-M_{\text{halo}}$ relations. The DC14 and cNFW models are also in fairly good agreement with each other, even though DC14 tends to predict slightly less extended cores and somewhat more concentrated haloes than cNFW.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.