Abstract
We investigated central place foraging (CPF) in the context of optimal foraging theory in Adélie penguins Pygoscelis adeliae of the southern Ross Sea by using satellite tracking and time‐depth recorders to explore foraging at two spatio‐temporal scales: within the day‐to‐day (sub‐mesoscale: single foraging trip, 10s of km2) and the entire breeding season (mesoscale: trips by multiple individuals across the collective foraging area, 100s of km2). Specifically, we examine whether three basic assumptions of the Orians–Pearson CPF model, shown to occur in other CPF species, are met: 1) within a patch, the rate of prey acquisition declines with time spent in that patch; 2) food is distributed in discrete patches and is not available between those patches; and 3) CPF species have knowledge of the potential (or average, at least) feeding rate within their universe of patches, and use this knowledge to determine their foraging strategy when planning or engaging in a foraging trip. We found that prey consumption rates did not decline with time spent in patches, and penguins foraged to some degree most of the time when at sea. Food availability, as measured by foraging dive rate, appeared to be predictable within the same day at the same location, but predictability broke down after 2 d at distances > 10 km away. We conclude that the assumptions of the Orians–Pearson CPF model are not a good fit to the circumstances of Ross Sea penguins, which clearly are central place foragers.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.