Abstract
Smoking behaviors are partly heritable, yet the genetic and environmental mechanisms underlying smoking phenotypes are not fully understood. Developmental nicotine exposure (DNE) is a significant risk factor for smoking and leads to gene expression changes in mouse models; however, it is unknown whether the same genes whose expression is impacted by DNE are also those underlying smoking genetic liability. We examined whether genes whose expression in D1-type striatal medium spiny neurons due to DNE in the mouse are also associated with human smoking behaviors. Specifically, we assessed whether human orthologs of mouse-identified genes, either individually or as a set, were genetically associated with five human smoking traits using MAGMA and S-LDSC while implementing a novel expression-based gene-SNP annotation methodology. We found no strong evidence that these genes sets were more strongly associated with smoking behaviors than the rest of the genome, but ten of these individual genes were significantly associated with three of the five human smoking traits examined (p < 2.5e-6). Three of these genes have not been reported previously and were discovered only when implementing the expression-based annotation. These results suggest the genes whose expression is impacted by DNE in mice are largely distinct from those contributing to smoking genetic liability in humans. However, examining a single mouse neuronal cell type may be too fine a resolution for comparison, suggesting that experimental manipulation of nicotine consumption, reward, or withdrawal in mice may better capture genes related to the complex genetics of human tobacco use. Genes whose expression is impacted by DNE in mouse D1-type striatal medium spiny neurons were not found to be, as a whole, more strongly associated with human smoking behaviors than the rest of the genome, though ten individual mouse-identified genes were associated with human smoking traits. This suggests little overlap between the genetic mechanisms impacted by DNE and those influencing heritable liability to smoking phenotypes in humans. Further research is warranted to characterize how developmental nicotine exposure paradigms in mice can be translated to understand nicotine use in humans and their heritable effects on smoking.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.