Abstract

Two cross-hole tracer tests involving the simultaneous injection of two nonsorbing solute tracers with different diffusion coefficients (bromide and pentafluorobenzoate) and one weakly sorbing solute tracer (lithium ion) were conducted in two different intervals at the C-wells complex near the site of a potential high-level nuclear waste repository at Yucca Mountain, NV. The tests were conducted to (1) test a conceptual radionuclide transport model for saturated, fractured tuffs near Yucca Mountain and (2) obtain transport parameter estimates for predictive modeling of radionuclide transport. The differences between the responses of the two nonsorbing tracers and the sorbing tracer (when normalized to injection masses) were consistent with a dual-porosity transport system in which matrix diffusion was occurring. The concentration attenuation of the sorbing tracer relative to the nonsorbing tracers suggested that diffusion occurred primarily into matrix pores, not simply into stagnant water within the fractures. The K d values deduced from the lithium responses were generally larger than K d values measured in laboratory batch sorption tests using crushed C-wells cores. This result supports the use of laboratory-derived K d values for predicting sorbing species transport at the site, as the laboratory K d values would result in underprediction of sorption and hence conservative transport predictions. The tracer tests also provided estimates of effective flow porosity and longitudinal dispersivity at the site. The tests clearly demonstrated the advantages of using multiple tracers of different physical and chemical characteristics to distinguish between alternative conceptual transport models and to obtain transport parameter estimates that are better constrained than can be obtained using only a single tracer or using multiple nonsorbing tracers without a sorbing tracer.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.