Abstract

The objectives were to determine the performance of four immersed, ''supply-side'' heat exchangers used in solar domestic-hot-water systems; to examine the effects of flow rate, temperature difference, and coil configuration on performance; and to develop a simple model to predict the performance of immersed heat exchangers. We tested four immersed heat exchangers: a smooth coil, a finned spiral, a single-wall bayonet, and a double-wall bayonet. We developed two analyticl models and a simple finite difference model. We experimentally verified that the performance of these heat exchangers depends on the flow rate through them; we also showed that the temperature difference between the heat exchanger's inlet and the storage tank can strongly affect a heat exchanger's performance. We also compared the effects of the heat exchanger's configuration and correlated Nusselt and Rayleigh numbers for each heat exchanger tested. The smooth coil had a higher effectiveness than the others, while the double-wall bayonet had a very low effectiveness. We still do not know the long-term effectiveness of heat exchangers regarding scale accumulation, nor do we know the effects of very low flow rates on a heat exchanger's performance.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.