Abstract
A new numerical method for solving the Cauchy problem for Hamiltonian systems is tested in detail as applied to two benchmark problems: the one-dimensional motion of a point particle in a cubic potential field and the Kepler problem. The global properties of the resulting approximate solutions, such as symplecticity, time reversibility, total energy conservation, and the accuracy of numerical solutions to the Kepler problem are investigated. The proposed numerical method is compared with three-stage symmetric symplectic Runge–Kutta methods, the discrete gradient method, and nested implicit Runge–Kutta methods.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Computational Mathematics and Mathematical Physics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.