Abstract
SUMMARYSeveral levels of both selenite and selenate were incubated with separate samples of soil for periods of up to 30 d and at temperatures between 5 and 60°C. The concentrations of selenite or of selenate which caused neither desorption nor further sorption–that is, the null‐point concentrations–were then measured at 25°C. In addition, the rate of desorption was measured after incubation at 60°C for 10 d. The ability of a mechanistic model to describe the results was tested.There were large decreases in the null‐point concentrations of selenite with both increasing period and increasing temperature of incubation. These effects were modelled as due to a relatively rapid diffusive penetration and a large activation energy for diffusion. Only a small proportion of the sorbed selenite was desorbed within 3 d but, at large solution:soil ratios, desorption appeared to be still continuing. These effects were fairly well predicted by the model applied to the sorption data. For example, the continuing desorption was ascribed to the slow reversal of the diffusive penetration. For selenate, the effects of period and temperature of incubation were much smaller. These effects were modelled as due to a slower diffusive penetration and a lower activation energy. Desorption was quicker and was more nearly complete. According to the model, a large proportion remained in the adsorbed form and was more quickly removed when desorption was induced. It is argued that the behaviour of selenite is consistent with diffusion into a crystal and the large activation energy is required to enable jumps over energy barriers. On the other hand, the lower activation energy for selenate is consistent with diffusion being limited to pores or cracks.It is suggested that the residual value of selenite fertilizers would decrease because of the continuing reaction, but that this effect would be unimportant for selenate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.