Abstract

We previously reported frequent loss of TESTIN in human endometrial carcinoma, which significantly suppressed tumor proliferation and invasion. Herein, we further explored the mechanisms underlying TESTIN loss and its roles in the epithelial-mesenchymal transition (EMT, a key step for tumor spreading). Methylation-specific PCR was performed to investigate the promoter status of TESTIN in a panel of endometrial cancer and normal endometrium tissues. The expression of TESTIN mRNA was determined by real-time PCR. Up- and down-regulation of TESTIN were achieved by transient transfection with pcDNA3.1-TESTIN and shRNA-TESTIN plasmids, respectively. The EMT alterations were observed under the optical microscope and EMT-related markers were detected by real-time PCR and western blot. Compared to the control (3.6%), TESTIN was hypermethylated in 43.7% endometrial cancer tissues (p < 0.001). Moreover, TESTIN hypermethylation was significantly correlated with advanced tumor stage, deep myometrial invasion and lymphatic node metastasis. In vitro, the demethylating agent dramatically restored the expression of TESTIN. In addition, up-regulation of TESTIN significantly suppressed the EMT procedure; whereas down-regulation of TESTIN enhanced EMT. In conclusion, we demonstrated that loss of TESTIN was mainly caused by hypermethylation, which might be a potent prognostic marker. Furthermore, we proved that TESTIN significantly suppressed the EMT procedure, proposing restoration of TESTIN to be a novel therapeutic strategy for endometrial carcinoma.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.